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TH I LIMIT-POINT , LIMIT- C IRCLE NATURE OF RAPIDLY

OSCI LLATiNG POTENTIALS

F. V. Atkinson , M . S. P. Eastham , and J . B. McLeod

1. Introduction

We consider the Weyl limit-point , limit-circle classification , i. e. the

number of linearly Independent solutions in L 2
(0 , ~), of the second-order equation

y ”( x) — q(x) y(x) 0 (0 < x < oo) , ( 1 . 1 )

where the real-valued potential q(x) has the form

a 13q (x)=xp(x). (1.2)

Here a and 13 are positive constants and p(t) is a continuous

periodic function of t .  We denote by a the period of p( t ) .

It is perhaps wort h remarking briefl y on the significance of the

classification into l imit-point  and limit-circle for general real-valued

potentials q (x) .  In the l imit-point  case , the linear operator

2
- ~~~~~~~~ + q(x)
dx

associated with the equation (1.1) and some homogeneous boundary condition

at x = 0 , say y( 0) = 0, is self-adjoint (and so enjoys a well—defined

spectral theory) without the need to Impose any boundary condition at 0O •

In the limit-circle case , on the other hand , the operato r does not become
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sei f -ad jo in t  until its domain is re stricted by the imposition of some
A

suitable boundary condition at ~ , and for each of these boundary

conditions there is a different spe ctrum. From the quantum-mechanica l

point of view , where we expect a well-defined spectrum without the need

to i mpose addition :l boundary conditions , the limit-point case is the

more natural , but a discussion of this and some related topics is given in [ io J .

If we turn now to the particular case of (1. 2), one simple remark can be

made at the outset and this is that , if a ~ 2 , (1 .2)  makes (1.1) l imi t—p o in t

for all 13. This follows fro m the well-known Levinson limit-point criterion

q(x) > -kx 2 [4 , p. 231], k a positive constant , which is applicable if

a < 2 because p(t), being periodic , is bounded below . The situation is

less simple if a > 2 and the obje ct of thi s pape r is to analyse the limit-

point , limit-circle nature of (1. 2) for all a and 3. In view of the simple

remark made above , we assume fro m now on that a > 2.

A partial analysts of two particular cases of (1. 2) has already

appeared in the literature . The first case is p(t) = sin t , for which

(1 .2)  was shown by Eastham [ S J  (see also [12 J )  to be limit—point If

13 < 2. The range 13 < 1  had previously been covered by the work of

Hartman [ll J and McLeod [ lS- 17J .  The second case is p(t) - I + k sin t ,

where k is a constant . This time (1. 2) was shown by Eastham [ 6]  to

be limit-circle If I~ 
> ~ a + and to be limit-point If 13 < 2 and 1k 1 > I

(see also [7 J ) .  Some corre sponding results for fo urth-order differential

equations have been given recently by Atkinson [2  J and Eastham [9 ] .
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Throughout the paper , we denote by M the mean value of p ( t )  over (0 , a) , i.~~.

M = a 1
f p(t )dt .

In the paragraphs which follow , we divide our analysis of (1. 2) into various

cases . In the range a < 2 13 - 2 , the results depend on whether M 0 ,

M > 0 , or M < 0. In the range a > 213 
- 2 , the results depend on

whether p(t) takes a positive value or not. These results are summarised

on the accompanying figure . The situation on the line a = 2 13 - 2 is

a special one and is described in §9 below . It will be seen from the

figure tha t our analysis is complete as far as the regions a ~ 2 and

a < 213 - 2 are concerned. For the region in which a > 2 and a > 2 1 3  - 2

our analysis is incomplete itt that

(i)  when p(t) < 0  everywhere , diffe rentiability conditions are

imposed on p(t) (see §7 below for a more detailed statement of these

conditions);

(I i)  the case where p(t) 0 but p(t) ~ 0 everywhere is not fully

dealt with . The situation seems to depend not only on a and 13 but also

on the order of the zero s of p(t) . The information that we have on this

case is given In §8 below .

—3—
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l .p . i f M O and a~~~~13
if M ; 0 and a > 13 213 - 2

l .c .  if M < 0

uded) is
(2, 2) infinitely differentiable)

2

4-
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2. Th~~~~ j~ M 0 , ‘- 13

I t i f l ’

t
P ( t)  = ( p (u )du

0

Then the con H t & o n  M = 0 implies that P(t) has period a and hence

that  I’ i t )  is bounded tu r  all t. We refer now to a particular case of a

l imi t—poi nt criterion of Brinck [ 3 ) ,  that ( 1.1) is l imit—point  if

f x ’q( x) dx > - C (2.1)
I

for all intervals I in , say,  [ I , °‘) of length < 1, where C is a

constant. In our case of (1. 2), we have

f x 1q(x) dx = 13
1
1 Xa P

P (X P )d( X 13)

J J

= 13 
l [ a 1 3~( 13) )  - p l(a - 13) f x ’

~~
13
~~P(x 13)dx .

J

Since P(x 13) is bounded for all x ~ 0 and since we are assuming in

this section that a .~~~ 1~, we have

— lI f  x q ( x ) d x l < C
I

for some constant C, and so (2. 1) is certainly satisfied .

That oscillating potentials of the kind considered here might be

covered by (2.1) was suggested by Brtnck himself [ 3 , p . 2 2 9 ] and he gave

a a-f lthe exdmple q(x) - x s tn(x  ) .

The result , then , of this section is:

~~ M = 0 and le~t ~ < 1 3 .  Then (1. 2) makes ( 1. 1) limi~-polnt.

— 5—



We remark that A can also be proved by means of a l imi t -poin t

criterion which is of the same kind i~~ the one in ~ and can even be

deduced fro m it - that ( 1.1) is l imit-point  if there is a sequence of non-

overlapping intervals (a , bm ) in [0 , ~‘) with ~~(b - ) 2 
=

an d su ch that

(b m 
- am ) f  q(x)dx > - C (2 .  .~)

for all intervals J C (a , b ) .  This criterion is given specifically in [ 2 )

as a particular case of results for higher-order differential equations.

It is also of the same nature as the criterion in [ 3 J .  The choice to be

~ I —
~~made In our case of (1.2)  is a = m 2 , b = + — mm m 4

-6-



L The case M = 0 , 13 < a  < 2 13 - 2

We note that , since a > 2 , the condition a < 213 - 2 implies

tha t 13 > 2 . Hence the stated range 13 < c~ < 2 13 - 2 is meaningful .

We tra nsform (1.1 - 2) to a more manageable form by means of the

transformation of Liouville type

t = x 13, z(t )  = x ~~~
2 y( x) . (3 . 1 )

Then we obtain

~(t) + {bt 2 - 13 
2 t 2

~ p(t) }z(t )  = 0 , ( 3 . 2 )

where b = (1 - 13
2 ) and

( 3 . 3 )

In this section , we determine the asymptotic form of the solutions

of (3. 2 ) as t —‘ 
~~~~. Our method require s that

O < Z y < 1 , ( 3 . 4 )

i .e . ,  b y ( 3 . 3),

( 3 . 5)

and this is certainly ensured by the stated range 13 < a < 213 - 2

In (3. 2) we substitute

z(t) = u( t )v(t)  , ( 3 . 6 )

where

v(t) = t~ {i + ~~ Pr (t)t
2ttY 

+ r (t)t 2
~~~ ) . ( 3 . 7 )

_ _ _ _ _ _ _ _ _ _ _ _  
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He lL ~hc in teger  N is chosen to make

(2N l) ’y > 3~ + 1 ( 3 . 8 )

a n i  the  p ( t )  and r l t )  are twice continuously differentiable periodic

func t io ns , with period a , which are defined below.

W i t h  the subst i tut ion (3.  6) , (3.  ~) becom es

V 
~~ 

V
’ uv~ [ ~ {b( 2 

- 13~~~~~
’
~p(t ) ~v ) = 0 . (3 . 9 )

Our i~ t n ~ i n is th at  the coeff ic ient  of u in (3 .  9) should appr oach a

positive ~on sta n t a s t -.

Now v 3 
has the fo r m

3N
v 3 

= t 3
~~~i + ~~ r ( t ) t

2
~~~ + O(t~~~~~ )} , (3 .10)

1

where rn (t )  has period a , a nd rn (t) does not involve pn+i (t )
~ PN(t ) .

In particular , we note that

r1
(t) 3p

1(t) . (3.11)

Al so ,

~ {bt 2 - 13 
2

t 
2
~ p( t) )v= t~~ ~~ t

2 
{~~~~(t )  - P

_ 2
p(t)p n_ l (t ) ) + {b + v( ~ - 1) }t~~

2 
-

- 2~ t~~~ ’~ 1(t ) + t~~~~F (t) + o((~~~ ) + O(t~~
2
~~~~~ )

where p
0(t) 

= 1 and the 0-terms refer to t -. ~~~~. By (3.  8), the second

0-term can be neglected . Hence , using also (3.10),  th e coefficient of

u in (3.9) has the form

-8—
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~~~~~~ {~~~(t )  ~ 5 ( 1) )  + {b + ~( ~ 
- 1) }t~~

2 
-

- 2~ t~~~~~1( t )  + t~~~~~
1r (  t j  + O(t 3~~ 1)) , (3.12)

where s ( t )  involves , besides p( t ) ,  at most those p . ( t )  and r (t)

w i t h  j n - I and hence at most the p . ( t )  with j K n - 1. We note

in par t icular  that

s1( t )  = - 13
2p(t ) (3.13)

and

s2 (t )  = - ~3 2
p ( t ) p 1(t) + {~ 1(t ) - p 2 p(t)  }r1(t) . (3.14)

Let M denote the mean value of s (t) over (0 , a). Then the

periodic functions p (t) are defined for n = 1, 2 , . . . , N in turn by

= — S (t)  + Mn (3.15)

Also , the periodic function r(t) is defined by

~r ( t )  = Z’y j 1
( t )  . (3.16)

We note th at , by (3 .13) ,

M
1 

= - ~~
2 M = 0 . (3.17)

Also , since p1( t )  = - s
1

(t )  = p
2

p(t ) ,  again by (3.13), (3.14) gives

s2 (t) = — p
1
(t ) j

1
( t )

Hence

• aM 2 s2 ( t ) d t  = - [ p
1

(t ) ~~1
( t )  ~~ + f  ~~(t)dt .

—9—
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Thus M 2 > 0  ari d we wri U M = A2 . We now subs t i t u t e  ( 3 . l ~ ) •j nd

3. 16) in to  (3 .  l.~~. Then (3 .  12) takes the form

A2 
+ R ( t )  + {b f - l) }t ~~~

2 O(t 1i , 
( L 1 :~)

where

R(t) = ~~ M l (2 n 4 )
~ . ( 3 .1fl

In ( 3 . 9 ) ,  we now make the change of variable

= I v~~ (t ) d t  - ( 1 - 2~ ) 1t1 2
~~{l + O(( 2

~ ) } . (3 .  20)

except that  the 0-term would be O(t 2 log t) if 2~ = . Then , writing

u ( t )  = U(~ ), R( t )  =

and using (3.18), we can write (3.9) as

+ u {A 2 
+ R1(~ ) 0(~

_d )} = 0 , 3.2l )

where

min~ 2 , ( 1 - 2~ )~~ ) > 1 . (3. 22 )

We note tha t , by (3 .  4) and (3 .  20), ~ -~~ as t -.

By (3.19), we have

~
°° 

~dR(~~ dt <

and hence the asymptotic form of the solutions of (3 .  21) as ~ ~ follo w s

from the r emark s on pp. 91-9 2 of [ 4 ~~. Thus ( 3 .  21) has two solutions

-10-



wh~~h are a s ymp t u h c  respectively to

2exp(± t f  (A t

0

In partic ular , goi ng back through ( 3 . 7 ) ,  ( 3 . 6 ) ,  and (3 .1) ,  we fi nd tha t

(1.1 ) ha~ twa solution s y
3

(x) , ( i  = 1, 2) such that

y~(x) I —

i . e . ,  by (3 .  3),

Iy~(x) I ( 13-a-l)/Z ( 3 . 2 3 )

as x -. -‘~~ . If a > 13, these two solutions are both L2
(O , o c ) ,  and

so we have the limit-circle case for ( 1. 1). Thus the result of this section is:

B. Let M = 0 and let 13 < a < 2 1 3  - 2. Then (1. 2) makes (1.1 )

l imi t—ci rcle.

We potnted out in ( 3 . 4  - 5) that the above method up to (3 .  23)

works when 13 - 2 < a < 213 - 2. Therefore it also follows from (3 .  23)

tha t , when 13 - 2 < c~ < 1 3 ,  (1. 2) makes (1.1) limit-point and , to this

extent , we have an overlap with the result A of §2.

We conclude this section by mentioning, first , that our method

has some points of similarity with the one indicated In §~ 2 and S of [18)

and , secondly, that a possible alternative method would be to compare

(3. 2) with the periodic equation ~(t) 
- p(t) z(t )  = 0, where ( Is a

small parameter (cf .  [1]) .

- 11-
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1.  The case M > 0 , ~ 213 2

Suppose fi rst that  o (3. Then we can use (2.1)  ag ain  because now

x 1q(x)dx = f MX ’~~~dX + (x
l+t1

{p(x ~~) - M )dx
J J J

~ f x  a
{ (

13
) - M}dx ,

J

and this in tegra l  is bounded as in §2 since p(t)  - M has mean value

zero . Thus the limit-point case occurs .

Now sup pose that 13 < a c Z p - 2 . Here we need only take the

case N 1 of ( 3 . 7 )  and omit the term Involving r(t) . Thus we define

v(t)  = t~ {i + p
1
(t)t  2~ }

where p1(t) is the periodic function defined by

= 13 
2

{p(t) - M ) .  (4.1)

Then

+ {bt 2 
- p 2t 2 Vp(t)}v

- l)t~~
2 

+ (3 2t ~{p(t) - M } + bt~~
2 

- p 2t~~p( t) +o( t~~) = -M(3 2 t~~ +o(t  Y)

since ~y - 2 < - y . Hence (3.9) is

v2 
~~ v2 

— u{M p 2t 2 ’
~
’ + o(t 2 ’

~’) )  = 0

Since {~ } here is large and positive for larg e 1, this eq uation has
2

solutions which are exponentially (and more) large in ~ = ( dt/v . Thus
0

we have a solution u(t ) such that u(t) > exp(k t1 2  ‘5, where k > o.

Then certainly the corresponding solution y(x) of (1 .1) is not L2(0 , c~),

and again the limit-point case occurs. Thus the result of this section is:

C. Let M > 0  and let a < 2 1 3  - 2. Then (1 .2 )  makes (1.1 ) limit-point.

— 1 2 —



~~~. The c~ise M~~- O . a ~~~ 2~~ - 2

Suppose f i r s t  th at  (3 > + . Then the situation is covered by

the ana lys i s  in ~ - -1 of [ 6 )  — see especi ally ( 4 . 4 )  and ( 4 . 5 )  of [ 6 ) .

We again def ine  p1( t )  by ( L i )  above and then define

(3
s ( x ) = x  p

1
( x ) .

Hence ( 1. 2) ~~ in be wri t ten

aq(x) = Mx + s ”(x) + 0(x

and s~x) sat ish s the conditions on S in Theorem 2 (and its modification)

in [ ~ J .  Then , as in [ b J ,  we have th e limit-circle case.

Suppose next that  (3 - 2 < a  < 2(3 - 2 . Thus ( 3 . 5 )  holds and we

shall consider again the method of §3. We note first , however , that

these two sub-cases  (3 > a + and (3 - 2 < a < 2(3 - 2 overlap and

between them make up the whole of a 41 
- 2 , subject of course to

the condition a > 2 which is assumed throughout.

We make the substitution (3.6 - 7) again.  The condition M = 0

which was imposed in ~3 was not in fac t  used until (3.17 ).  If now M � 0,

(3.18) is replaced by

S(t) + {b * - l))t~~~
2 

+ 0(t 1)

where

N
S(t )  ~~~

‘ M
i~~~~n

—1 3—

— 
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I,

and , ~~~ in ( 3 . 1 7 ) ,  M 1 
- (3

2 M ( #  0 now). Thus the leading term in

S(t) is

- 13 ~Mt 2
~ , ~ . 1)

which is large and p c s i t ive  as t ‘. Correspondingly.  (3 .  ~l) is

replaced i~y

+ U ( S 1(~ ) 0(~~ d ) } 0
d~

where 
~~~~ 

= S(t ) .

We now substi tute

U(~ ) = S1~~~(~ )w(~ ) ( c . 2 )

and write

= f S1 (~ )d~ - (5.3)

Then we obtain , as we did (3. 9) and (3.  2 1),

+ W(l S1
3
~

4 (~ ) 
~~~ 

S~~~
4(~ ) + o{Cds l (~ )) )  = 0 , ( 5 .4 )

where W( rj ) = w(~ ). By (5 . 1) and (3. 20), the coeff icient  of W here Is

1 * O(t~~) + O(t d 2 2
~ ) . 

~~~~~~ ~)

Since 2~ < 1  and d > I , by (3. 4) and (3 .  22),  we have

- d(l - 2~ ) - < -  I

this inequality betng a re-arrangement of (d - l)(l  - 2-y ) > 0. Hence

( 5 .  ~) is

1 + ot ~~ I + O( ~-l/ (l-v) )

- 14—



by ( S .  3) and (3 .  20 ).  Since i/(1 - -y )  > 1 , we can again quote pp. 91 - 92

of [ 1 )  to say that all solutions W( 1) of ( 5 . 4 )  are bounded as ~ ‘ .

Hence , goi ng back through ( 5 .  2), ( s . l ) ,  ( 3 . 7 ) ,  ( 3 . 6 ) ,  and (3 .1 ) ,  we fi nd

that  all sol utions y(x) of (1. 1) are

0(x~~~~~~~~~~h/’2 ) = O(X a/4 )

as x -~~~~. Since a > 2 , all solutions of (1. 1) are , ther efore , L2
(0 , r)

a n d  we h ave the limit—circle case. Thus the result of this section is:

D. Let M < 0  and let a < - 2. Then (1. 2) makes (1. 1)  l imit-circle.

- ‘5-  
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~~~. The case u > 2 13 - .
~~
. p t )  ta~jn ositive values

In ( 3 .  ~) , we now h~ ve y < 0 and we wr i t e  ‘y = - 6 , so tha t

~
‘ 0. Then in ( 3 .  2 ) we wr i te

— 21 ( t )  = 3 t p(t)  — bt

so that

z t )  = F ( t ) z ( t )  . (6. 1)

Si nce p(t)  is a periodic func t ion  which is now assumed to take positive

value~ , we can say that  there are positive constants A 2 , B2 , 01, 0 2

such that

A 2 t 2’5 F (t)  < B2 t 26 ( 6 . 2 )

in the intervals (0 1 + na , 02 + na) , n = 0 , 1 We call these

intervals (a , b ) .  By taking 0
~ 

- 01 small  enou gh , we ca n arrange that

B < ~~~A .  ( 6 . 3 )

Let z~~ 1(t) and z~ 2(t )  be the solutions of (6 .1)  defined by

zn l (an
) = 0 , ~~ , 1(a~ ) = I , (6 . fl

b

z~ 2 ( t )  = Z~~ 1~
t) f  z~

2
1(u)du (6. 5)

We note t h - ~t

w ~ i’ ~~~~ 2
) k t ~ = — I . (6.  ~ I)

Let N be any integer.  From (6. 2),  we have for n > N

( 6 . 7 )



i n (a , b ) , wheren n

- Aa
Ô 

and K = (B/A)sup(b /a )
6

n >N

By (6. 3), we can choose N so that

K < ~~~. ( 6 .8)

By (~~.7 ) , the theory of d i f f e r ential inequalities 120 , p. 69)  applied

to (6.1) r l r i d  ( € ~. 1) gives

~~
‘sinh {~i~(t - an)) ~ z~ 1(t)  ~ (K ~i )~~sinh{K ~ (t  - a

n
))  .

Then (6. s) gives

s inh {K 1~i (t - a )}slnh{ 1i (b - t) }n n n r iz (6.10)n, 2 K sinh {~ ( t  - a ) ) s inh{~~ (b - a ) )n n

and

K s i nh (~ (t — a ) ) s i n h { K ~ (b — t ) }n n o nz ( t ) >n , 2 — sinh{K 1.t ( t  - a ) }sinh{K ~ (b - a ) )  (b . l l )
n n n

Now consider any two real solutions z1(t ) ,  z 2 (t) of (6.1) such that

W(z1, Z 2
) ( t )  1 . (6. 12)

In (a , b ), we mus t  haven n

z1(t)  — A z  1(t) + B z ( t )n n , 2

z ( t ) C z  ( t ) 1 D z  (t) ,2 n n , l n n , 2

and (6.  h) and (6 .12)  imply  th a t

A D - B C = - I . (6.13)n o n n

— 1 7 —
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It follows from (1. 1) that (1. 1) wIll be limit—point if , for all i n tervals

(a , b )  with n large enough ,
b bn n

eithe r I z~ ( t ) t ~~~
2 

dt k or f z~(t ) t 2
~~ 

13dt � k , ( 6 . 1 4 )

k being a positive constant  independent of n .  Now ,

b 
z 2( t ) t 2

~
2
~~ dt = A2! + 2A B J B21 , ( b . l S )1 n n , 1 n o n  n n , 2an

where

I = z~ 1(t )t 2
~

2
~~ dt ~ k~~~

3a~
Z +2/13e n n 0

In f  z~~ 1(t) z0 2(t)t 2
~

2
~~ dt ~ k~~

2a~ 2+2/13e~~~~~~~~~ 0 0

fl , 2 f  Z~ 2 (t) t 2+2/P
dt ~ k~~

1a 2
~

2
~~

on usIng ( 6 . 9 ) ,  (6.10),  and (6.11) . By completing the square in ( 6 . l c ) ,

we see th at

b

I .  Z~~(t)t 2
~

2
~~ dt � A~(I~ l’n , 2 

- J
2 )/I 2

Then (6.1 -4) certainly follows for z1(t ) If

(6 .16)

-18-
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wh ore , in neglecting J~ in comparison to I~ i’n, 2’ 
we have used

th e inequal i ty  4( K - 1) < 2 , whIch  i s implied by (~~. R ) .  S imilar ly ,

(j .14) follows for z 2 (t ) if

• • -2~i (b -a2 3 2—2/ 13 0 0 flC > k ~ a e . ( t ~. l , )
0 f l O

II neither (6. 16) nor (6.17) holds , then, by (6.13), we must have

either

B2 > k~~
3
a

Z+2
~
/13
e

n 0 n  (6.18)

or

D
2 

� k~~
3
a 2+2/13e

n n n  
, (6.19)

and then the inequality

I z~(t)t
_Z+2/13dt � B~ (I~ l’n , 2 

- I~ )/I n ,

obtained again fro m ( 6.15) by completing the square , gives (6.14)  for

z1(t) in the case of (b . l 8 ) .  ‘We can argue similarly for z 2(t) in the case

of (6.1 9).  Hence the result of thi s section is:

t. J~~~ a > 2(3 - 2 and let p(t) take positive values. Then

U.. 2) makes (1. 1) l i m i t — p o i n t .

We remark that the result E for the more restricted range a > 4(3 - 6

follows from a general l imit-point  criterion of Ismagilov [131 - see also 114 1.

_ _ _ _ _ _ _ _  
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7.  The case ~~ > 2 ( 3 - .~~ . 
p ( t )  < 0  for all t

As in  §h , we write y = - & in ( 3 . 2 )  and , since p (t)  < 0 now ,

we can write (3
2
p(t) = - c 4 t ) , where Q(t) ‘ 0. Then ( 3 . 2 )  is

zit) + {bt
2 t 26 Q 4 (t ) )z ( t )  = 0 . (7.1)

We make the substi tution ( 3 .  ~ ) again.

z(t) = u ( t) v ( t)  (7.2)

but , instead of (3 .  7) , we take

N
v ( t )  = t~~

6 Q(t ){ l  + ~~ p (t ) t 2°6 ) , (7.3)
1

where the integer N is chosen to make

2( N * 1)6 > 6  + 1 ( 7 . 4 )

and the p (t), to be defined below, have period a. Then, as for ( 3.9) ,

we have

v
2 
~~ v

2 
+ u[t

~~~
6
Q3( t){l + ~~ p (t) t 2

~~ } 3 x

x ( t ~~~ô(t ) U + ~~ p (t )t _ 2fl6 } + 2t 2
~~~(t ) ~ ~~(t) t 2

~~ +

N
+ ~ 

2 Q(t) ~ ~~(t)t 2
~

6 
+ 0(t 2

+ {b( 2 
+ t 26 Q 4(t)}t 26 Q4(t) {l  + ~ p

0(t)t 
2n6
) ] = 0

I
-~20-
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which  is

2 
+ U[t

_ 2
~ Q t){ 1 + ~~ p ( t i t

2
~~~ } x

A 

(
~~~t) ~i ~ ~~ p (t) t 2

~~~) +

+ ZQ(t)  ~~~

‘ 

p (t )t  + Q(t) ~ ~~(t )t 2fb) +

N 4 1

~ (1 + L p ( t ) t 2°6 ) + 0(t
2
~~~) = 0 - ( 7 . 5 )

1 J
On expanding {..  - ~4 here by the binomial theorem , we obtain (inter

alia)  the term s 4P (~)~~
2n1ö (n = 1, - . - , N). Then p (t) is chosen

so that there is no term involving t
2
~
6 

in [~~ 
- J . Thus

p
1(t) = - 

~~~ Q3
(t )~~(t )

and P~ (t )  ( n ~ 2) invol ves p1(t) ,  . . - , p0 1 (t ) .  Hence the p (t) are

determi ned in turn .

It is clear also that  pN (t )  involves Q~
2
~~ (t)  and so we mus~.

assume the existence and continuity of Q~
2
~~~

2
~(t)  and hence of

(2 N + 2 )  
-p ( t ) .  The nearer 6 is to zero , the larger N is (by (7. 4)) and

the greater the d i f f e r e n t i a b i l i t y  required of p( t ) .  If 6 > 1 ( for example),

I . e .  If a > 4 ( 3  - 2, we can take N = 0 in ( 7 . 4 )  and then we need

only assume the exl sten ~~ and cont inui t y  of j ( t ) .  More generally , if

— 2 1 —

~~~~~••-~~
-— 
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‘2N ~ ‘)p ’ (U exists and is continuous , we can deal with the region

~

~i > 2(3 
- 2 since this  l a s t  inequal i ty  is j u s t  a r e - a r r a n g e m e n t

of (7.  4) .  therefore , we wish to deal with the entire region (~ > 2 13 - 2

with a single  ( I l f f e r ent i ab i l i ty  condition on p( t ) ,  t ha t  condition has

to be that  p (t )  is i n f i n i t e l y  d i f f e r en t i ab l e .

With  our choice of the p (t)  described above , (7 .  5) take s the

form

v 2 v2 
~~ u[ 1 + O(t

_ 2  +06 ) O(t 26
~~) ]  = 0 . ( 7 . 6 )

We make the chan ge of var i able

2
~~~

= f v (t)dt .
0

By (7.  3) , ~/t~~~ lies between positive constants as t -. ~~~~~. Hence

( 7 . 6 )  becomes

9 + U{ i + 0(~ -d ) } = 0 , ( 7 . 7 )

where U(~ ) = u(t) ,  d > 1 , and we have used (7.  4) .

Since all solutions U(~ ) of ( 7 . 7 )  are bounded as ~ 
-. 00 , agai n

by pp. 91 - 92 of [4 ] ,  it follows from ( 7 . 2 )  and ( 7 . 3 )  that all solutions

z(t) of ( 3 . 2 )  are 0(t~~~ ) a s t — 
~~~~. Hence , by (3.1) ,  all solutions

y(x) of ( 1. 1) are 0(x 6 O ~’2 ) O(x~~a) as x - 
~~~~~. Since a > 2 ,

all solutions of (1 . 1) are , there fore , L2(0 ,~~) and we have the limit-circle

case. Thus the result of this section is :

F. Let a > 2(3 - 2 and let p(t) < 0  for all t . Also, let p(t) be

jjj flrdtely differentiable. Then (1. 2) makes (1. 1) limit-cIrcle.

— 2 2 —
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~~~ . ho c u S O  a > 2(3 — 2 , p( t )  < 0 for all t , ~~~ p( t )  ta~~~~~ the

value zero

We do not have a complete analys is  of thi s case but we can say

enough to indicate that the s i tua t ion  is more complicated than in previous

cases in t h o t  the order of the zero s of p ( t ) ,  as well as a and (3,

appe ar s to a f fec t  the l imit-point , l imit -circle nature of ( 1. 2) .  We shall

give the discussion fo r the particular potential

a • Zn (3q(x) = — x sin (x ) , ( H . l )

where n Is a positive integer , but  the ideas require only obvious

m odifications for suitable more general potentials (1 . 2 ) .  However , it

doe s remain an open question to what  extent (8.1) is typical of all

potentials (1 . 2 )  falling under the heading of this section . There are

certainly complications if p(t ) has an infinity of zeros of order Zn in

(0, a), or more generally if it vanishes at a point which is~ not a zero of

a specif ic  order.

We obta in f i r s t  a l imit -point  result  for (8.1). We take

a = (m~~~~~ - m~~
/2 and b = (m~ )1~~ + m~~~

/2 In ( 2 . 2 )  (or in

Corollary 1 of [ sj ) .  Then (8.1) will be limit—point if

xa sin
2
~(x~) <Cm (8.2)

In (a , b ), where C Is a constant. To ensure that the (a , bm m m m

are non-overlapping, at any rate when m is large enough, we take

(3~~ 2 . (8.3)

— 2 3 —
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Si nce x (m ~~~~~ O(rn ’ ~2 ) in ( a .  bm
)
~ 

(8 .2 )  is satisfied if
I ~

a • 1 1F - ~ ) 1

i . e .  ii

a + (n - l)p < 2n

Thi s condi t ion impl ies  ( 8 . 3 )  since a > 2 .  Hence we have

U .  Let a + (n - l) (3 < 2 n .  Then I~.j~~mak e s_( l . l jj j mi t -po in t .

We now make a con )ecture .

H (conjec tured) .  Let a + (n - l)~3 > Zn.  Th~~ J8.~j  makes (lJ~
l i m i t — c i r c l e .

We suppor t  this conjecture with the following rem arks .  Considering

(3. 2) , we seek an approximation to solutions of

— —2 -2 26 2nz(t)  + {bt + (3 t sin t } z ( t )  = 0 ( 8 . 4 )

throughout  an in te rva l  I (m - ~~ )n , (m + ~~ ) i i ) ,  where m is a large

integer and , as in §~ 6 and 7 , 8 -
~~~ > 0. We define

—2 -2 26 - 2nFi t )  = bt 4- (3 t sin t

~(t )  = (n ~ l)
t
~~°~’~(f P 2 ( u)du) ’~~°~ U , ( 8.  5)

and

f(t)  =

Then it can be shown that , both when t - mi~ is small and when t - cm’

is exactly of order 1,

—24—
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(i )  f i t )  ~ m • h ( n t  1) 
, ( 8 . 6 )

i~h ) t ( t ) W ( ~~) s a t i s f i es  an equation approximat ing to (8. 4) , where

W(~~) is a solution of

~ ~
2°W - 0 . ( 8 . 7 )

We omit  the r out ine  details of the ca lcula t ions .  Now (b)  suggests  th at

solutions z ( t )  of (8. -1) are approximately of the form f( t )W( ~~) and

hence , by ( 3 . 1 ) ,  th at  ( 1. 1) is l imi t—circ le  if

2

~ .1 f ( t )W( ~ ) I  t 2 t2 / P dt <~~~~~~~~ . (8 .8 )
m (m- ’Jir

By (8. s) and (8. b ) ,

~~°P ’(t ) = f
2

( t )  ~‘<

Hence (8 .8 )  holds i f

~ m~~ 
1 2+2/(3 

m+~~~} 
lW (~) I

2
d~ < 0 0~~

m

where we have used (8. t )  again.  Since all solutions W(~ ) of (8.7) are

O(~~~2 °) as ~~ 
— 00~~~ the Integral term here is bounded if n >1 .  (The

case n = 1 introduces a negligible logari thm.)  Hence (8.8) holds if

26 2
+ 2 —  — > 1 .

n + l

Since 26 -Z y = -2 + (a Z)/p , this reduces to a (n - l)(3 > Zn

as re quired.

-25-



c.

The rigorization of this argument would appear to involve some

complicated analysis on the lines of the Langer-Titchmarsh appro ach to

turning points. Although it is hoped that a treatment of this will appear

In due course , the details have not been carried through at the present

tim e.

-2 6-



I,

9 . The case a - 2(3 - 2

In thi s section , it is convenient to consider , in place of (1. 1),

the equat ion

y ”( x) - {q(x) + b(3
2
x

2 }y(x) 0 , (9 - 1)

where b is as in ( 3 . 2 ) .  Since the coefficients of y(x) in (9.1)  and

( 1. 1) ( i f f e r  only by a term b(3
2x

2 
which is bounded in the neighborhood

of x = -
~~~, the l imit -point , l imi t—circ le  nature of (1.1) is the same as

that of ( 9 . 1 )  at x - ‘ (ci. [ 4 , p. 2 2 5 ] ) .  When the transformation (3 .1)

is applied to H.1), we obtain , in place of (3.2), the simpler equation

~~(t) - (3 2
t 

2
~ p(t) z(t) = 0

In the present  case  when a = 2(3 - 2 , ‘y = 0 and we have the periodic

equat ion

~ (t)  - (3 2
p(t)z(t) = 0 . ( 9 . 2 )

The l imit-point , l imit-circle nature of (1.1) is connected to the stability

nature of (9. 2), a connection which was noted by Sears [ 19J in a not

dissimilar context. For completeness , we give here the details of this

connection and we refer to [8 , §~ 1.l - 3J for the necessary theory of (9. 2) .

If (9 .  2) is stable , all solutions of (9. 2) are bounded in (0 , 00)

and so, by (3.1), all solutions y(x) of (9.1) are

O(x~~~~1)/’2) = O(X a/’4)

as x -. 00~ Since a > 2 , we have the limit-circle case.

- 

“ ,
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If (~1 .2 )  is unstable , (9 .2 )  has an exponent ia l ly  large solution as

• -
~~ in I t h e  corresponding y (x)  is cer ta inly  not L’(0, -. ) .  Hence

we have the lc~e~ — point case.

If , ‘~ . 2  is cond i t i ona l l y  stable , but  not stable ( i . e .  case D2 or

case L2 of [8 , 1 . 2 1  holds),  ‘ 9 . 2 )  has a solution z( t )  of the  form

z(t) t l
1

( t )  + P

2

( t )

where i 1(t )  a n , l £
2 ( t )  have period a or 2a. For this z(t) we have

( 1z 2
( t )  It 2 + Z/ ( 3

d

and hence , by ~~3 .l ) ,  the corresponding y(x) is not L 2
10 , -‘) . Thus  we

have the l imit -po in t  case again.

The result , the n , of this section is:

I. Let a 2(3 - 2. ~~(9.2) is stable, then ~~~~ makes ( 1.1)

• l imi t -c i rc le .  Otherwise 1 (1.2) makes (1.1) lImit—point.

An example in which both the possibilities in I are realised is

tha t in which (9.  2) is the Mathieu equation. Here,

p(t) - 
(3

2
(\ - q cos 2t)

where \ and q are constants with q � 0. Given q , (9. 2) can be

made both stable and unstable by choice of X - see , e .g . , [8 , §2 . 5] .
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